1 (i) Expand and simplify
$$(3+4\sqrt{5})(3-2\sqrt{5})$$
. [3]

(ii) Express
$$\sqrt{72} + \frac{32}{\sqrt{2}}$$
 in the form $a\sqrt{b}$, where *a* and *b* are integers and *b* is as small as possible. [2]

2 (i) Expand and simplify
$$(7-2\sqrt{3})^2$$
. [3]

(ii) Express
$$\frac{20\sqrt{6}}{\sqrt{50}}$$
 in the form $a\sqrt{b}$, where *a* and *b* are integers and *b* is as small as possible. [2]

3 Rearrange the following formula to make r the subject, where r > 0.

$$V = \frac{1}{3}\pi r^2 (a+b)$$
 [3]

4 (i) Express $125\sqrt{5}$ in the form 5^k . [2]

(ii) Simplify
$$10 + 7\sqrt{5} + \frac{38}{1 - 2\sqrt{5}}$$
, giving your answer in the form $a + b\sqrt{5}$. [3]

5 (i) Express $\sqrt{48} + \sqrt{75}$ in the form $a\sqrt{b}$, where a and b are integers. [2]

(ii) Simplify
$$\frac{7+2\sqrt{5}}{7+\sqrt{5}}$$
, expressing your answer in the form $\frac{a+b\sqrt{5}}{c}$, where a, b and c are integers. [3]

6 Make *b* the subject of the following formula.

$$a = \frac{2}{3}b^2c$$
 [3]

PhysicsAndMathsTutor.com

7 (i) Expand and simplify
$$(7 + 3\sqrt{2})(5 - 2\sqrt{2})$$
. [3]

(ii) Simplify
$$\sqrt{54} + \frac{12}{\sqrt{6}}$$
. [2]

8 The volume V of a cone with base radius r and slant height l is given by the formula

$$V = \frac{1}{3}\pi r^2 \sqrt{l^2 - r^2}.$$

Rearrange this formula to make l the subject.

[4]

9 (i) Express $\sqrt{48} + \sqrt{27}$ in the form $a\sqrt{3}$. [2]

(ii) Simplify
$$\frac{5\sqrt{2}}{3-\sqrt{2}}$$
. Give your answer in the form $\frac{b+c\sqrt{2}}{d}$. [3]

10 (i) Simplify
$$\frac{\sqrt{48}}{2\sqrt{27}}$$
. [2]

(ii) Expand and simplify $(5 - 3\sqrt{2})^2$. [3]

11 (i) Express $\sqrt{75} + \sqrt{48}$ in the form $a\sqrt{3}$. [2]

(ii) Express
$$\frac{14}{3-\sqrt{2}}$$
 in the form $b + c\sqrt{d}$. [3]

12 (i) Express
$$\frac{1}{5+\sqrt{3}}$$
 in the form $\frac{a+b\sqrt{3}}{c}$, where *a*, *b* and *c* are integers. [2]

(ii) Expand and simplify
$$(3 - 2\sqrt{7})^2$$
. [3]

13 Make v the subject of the formula
$$E = \frac{1}{2}mv^2$$
. [3]

14 Make *t* the subject of the formula
$$s = \frac{1}{2}at^2$$
. [3]

15 (i) Simplify
$$\sqrt{98} = \sqrt{50}$$
. [2]

(ii) Express
$$\frac{6\sqrt{5}}{2+\sqrt{5}}$$
 in the form $a+b\sqrt{5}$, where a and b are integers. [3]

16 The volume of a cone is given by the formula $V = \frac{1}{3}\pi r^2 h$. Make *r* the subject of this formula.

[3]

17 (i) Simplify $5\sqrt{8} + 4\sqrt{50}$. Express your answer in the form $a\sqrt{b}$, where *a* and *b* are integers and *b* is as small as possible. [2]

(ii) Express
$$\frac{\sqrt{3}}{6\sqrt{3}}$$
 in the form $p + q\sqrt{3}$, where p and q are rational. [3]