1
(i) Expand and simplify $(3+4 \sqrt{5})(3-2 \sqrt{5})$.
(ii) Express $\sqrt{72}+\frac{32}{\sqrt{2}}$ in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.

2 (i) Expand and simplify $(7-2 \sqrt{3})^{2}$.
(ii) Express $\frac{20 \sqrt{6}}{\sqrt{50}}$ in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.

3 Rearrange the following formula to make r the subject, where $r>0$.

$$
\begin{equation*}
V=\frac{1}{3} \pi r^{2}(a+b) \tag{3}
\end{equation*}
$$

4 (i) Express $125 \sqrt{5}$ in the form 5^{k}.
(ii) Simplify $10+7 \sqrt{5}+\frac{38}{1-2 \sqrt{5}}$, giving your answer in the form $a+b \sqrt{5}$.

5 (i) Express $\sqrt{48}+\sqrt{75}$ in the form $a \sqrt{b}$, where a and b are integers.
(ii) Simplify $\frac{7+2 \sqrt{5}}{7+\sqrt{5}}$, expressing your answer in the form $\frac{a+b \sqrt{5}}{c}$, where a, b and c are integers.

6 Make b the subject of the following formula.

$$
a=\frac{2}{3} b^{2} c
$$

7 (i) Expand and simplify $(7+3 \sqrt{2})(5-2 \sqrt{2})$.
(ii) Simplify $\sqrt{54}+\frac{12}{\sqrt{6}}$.

8 The volume V of a cone with base radius r and slant height l is given by the formula

$$
V=\frac{1}{3} \pi r^{2} \sqrt{l^{2}-r^{2}}
$$

Rearrange this formula to make l the subject.

9 (i) Express $\sqrt{48}+\sqrt{27}$ in the form $a \sqrt{3}$.
(ii) Simplify $\frac{5 \sqrt{2}}{3-\sqrt{2}}$. Give your answer in the form $\frac{b+c \sqrt{2}}{d}$.

10 (i) Simplify $\frac{\sqrt{48}}{2 \sqrt{27}}$.
(ii) Expand and simplify $(5-3 \sqrt{2})^{2}$.

11 (i) Express $\sqrt{75}+\sqrt{48}$ in the form $a \sqrt{3}$.
(ii) Express $\frac{14}{3-\sqrt{2}}$ in the form $b+c \sqrt{d}$.

12
(i) Express $\frac{1}{5+\sqrt{3}}$ in the form $\frac{a+b \sqrt{3}}{c}$, where a, b and c are integers.
(ii) Expand and simplify $(3-2 \sqrt{7})^{2}$.

13 Make v the subject of the formula $E=\frac{1}{2} m v^{2}$.

14 Make t the subject of the formula $s=\frac{1}{2} a t^{2}$.

15 (i) Simplify $\sqrt{98} \sqrt{50}$.
(ii) Express $\frac{6 \sqrt{5}}{2+\sqrt{5}}$ in the form $a+b \sqrt{5}$, where a and b are integers.

16 The volume of a cone is given by the formula $V=\frac{1}{3} \pi r^{2} h$. Make r the subject of this formula.

17 (i) Simplify $5 \sqrt{8}+4 \sqrt{50}$. Express your answer in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.
(ii) Express $\frac{\sqrt{3}}{6 \sqrt{3}}$ in the form $p+q \sqrt{3}$, where p and q are rational.

